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A novel idea of employing genetic programming to obtain mathematical

expressions representing the dependency of lattice constants (LC) on their

atomic parameters is presented in this paper. The results obtained from

simulations reveal that only two atomic parameters are sufficient for LC

prediction of GdFeO3-type perovskites. In addition, an advantage of this

approach is that there is no need to save any trained model as in the case of

other existing machine-learning based approaches.

1. Introduction

Traditional methods of determining lattice constants (LC) are usually

based on X-ray, neutron or electron diffraction techniques. These

techniques form a powerful approach and are very popular among

crystallographers. On the other hand, theoretical approaches for

determining LC are also gaining popularity because they do not

require any experimental setup or sample materials. They use

mathematical models and atomic features of the materials to deter-

mine LC, which are easy to simulate on computers.

LC prediction of crystalline materials is helpful in selecting an

appropriate material in many industry-related problems, especially

the material design of interface applicants (Liu & Edgar, 2002).

Lattice mismatch between thin films and their substrates is a well

known industrial issue (Dawber et al., 2005) and it limits the large-

scale production of thin films. Therefore, it is the requirement of

industry to develop prediction models that can correctly predict the

values of LC of unknown crystalline compounds with low temporal

and computational cost. Lufaso & Woodward (2001), using a bond-

valence method, have developed a software program named SPuDS

for the prediction of crystal structures of perovskites. Previously, an

approach based on support vector machine (SVM) has been used for

efficiently predicting LC without losing the generalization perfor-

mance (Javed et al., 2007). Chonghe et al. (2003) have also proposed

an approach based on artificial neural networks (ANN) for a similar

kind of problem. However, because of their inherent inability, both

approaches are unable to provide the functional form of the trained

models as mathematical expressions. In this study, the capabilities of

genetic programming (GP) are explored to automatically find

mathematical expressions rather than memory-based models that can

be used to predict the LC of novel GdFeO3-type perovskites. For LC

prediction of GdFeO3-type perovskites, the developed expressions

need only the ionic radii of the cations.

2. Experimental

MATLAB7 (Mathworks Inc., 2005) provides an easy-to-use compu-

tational environment with problems and solutions being expressed in

familiar mathematical notations. The GPLAB (Silva, 2005) toolbox is

used to employ the capabilities of GP in the proposed scheme. To

check and verify the performance of the proposed methodology, we

have used the data of orthorhombic GdFeO3-type perovskite mate-

rials. The space group of the orthorhombic GdFeO3 samples is Pnma

(O’Keeffe & Hyde, 1977), while the coordination number for the A-

site cation is 8. The dataset used in this work was taken from Chonghe

et al. (2003) and the Inorganic Crystal Structure Database (ICSD,
# 2008 International Union of Crystallography
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2002). The set of ionic radii that we had used was from Lide (1999)

and Chonghe et al. (2003). The whole dataset comprised a total of 161

samples, out of which 157 samples were used for training.. The

remaining samples were used as a test dataset and were treated as

new compounds. These novel data samples were taken from Chonghe

et al. (2003), Hannerz et al. (1999), Woodward et al. (2000), Kim,

Demazeau, Alonso et al. (2001) and Kim, Demazeau, Presniakov et

al., 2001.

3. Lattice constants and its dependencies

It is well known that the stability of an ionic arrangement depends

upon Gibbs free energy. However, Gibbs free energy for crystals

depends upon lattice energy, which is a function of the radii and

valence of the constituent ions. In this study we are interested in

predicting LC using only the ionic radii. We can express this rela-

tionship as

LC ¼ f ðrA; rB; rOÞ; ð1Þ

where rA, rB represent the ionic radii of cations A and B, respectively,

and rO = 1.32 Å is the ionic radius of the oxide ion. rO remains the

same for all the samples used in this study and thus can be neglected.

Consequently

LC ¼ f ðrA; rBÞ: ð2Þ

The stability of perovskites being related to ionic radii is also

expressed by the tolerance factor

tðrA; rBÞ ¼
rA þ 1:32

21=2ðrB þ 1:32Þ
: ð3Þ

We assume that the inclusion of the tolerance factor in the prediction

model for LC, as an independent variable, is helpful in quickly

correlating LC with ionic radii. Consequently, the functional form of

LC can be written as

LC ¼ f ðrA; rB; tðrA; rBÞÞ: ð4Þ

4. Developing LC prediction models

Our proposed methodology of developing LC prediction models,

representing the dependency of LC on its atomic parameters, mainly

consists of three major modules. These consist of: dataset generation,

GP expression evolution module and GP expression testing.

In dataset generation module, the whole dataset is partitioned into

two subsets: training and testing sets. Each sample pattern in the

training set consists of: input pattern, comprising the ionic radii of

cation A, rA, and B, rB, and the tolerance factor t. The corresponding

output comprises of experimental LC a, b or c. In GP expression

evolution module, mathematical expressions are developed, which

represent the functional form of the LC through an evolutionary

process.1

Each candidate solution in the initial population represents the

possible functional form of the LC prediction model. A solution

evaluation operation takes the initial population and the training

samples as an input and generates a set of output values, which are

used to compute the corresponding fitness given by (5).

fitness ¼ PAD=2þ ðMSE� 100Þ=2; ð5Þ

where the percentage of absolute difference (PAD) and mean-square

error (MSE) are given by the expressions

PAD ð%Þ ¼
experimental � predicted
�
�

�
�

experimental
� 100 ð6Þ

and

MSE ¼
experimental � predictedð Þ

2

Total No: of samples
: ð7Þ
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Figure 1
Actual versus predicted lattice constants a, b and c obtained with the GP approach.
The solid trend lines represent perfect agreement.

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: SO5010). Services for accessing these data are described
at the back of the journal.



The candidate with the best fitness value is checked against the

termination criterion. The outcome of the GP module is thus a

functional expression with the best fitness value. More details on the

subject can be found in Banzhaf et al. (1998). Once the best GP

expression is found, its performance on testing data is checked.

5. Results and discussion

The mathematical expressions (see supplementary data) for LC

prediction obtained from the GP process were evaluated on the

training dataset. Fig. 1 shows the plots of the experimental versus GP

predicted values of LC a, b and c. It can be observed from these plots

that the GP-predicted LC are concentrated near the ideal line and

consequently, the GP model is able to learn the functional depen-

dency of the LC on the atomic parameters. This fact can also be

observed from Table 1, which shows the statistical summary of PAD

(%) on the training dataset. The results in this table show that the

average PAD is less than 0.9% for all the three lattice constants of the

training data set.

Table 2 shows the GP-predicted LC and their corresponding PAD

values for the four novel compounds used as testing dataset. The

statistical summary of PAD (%) on the testing dataset is shown in

Table 1.

It can be observed that the average PAD is less than 1.5% for all

the three lattice constants of the testing dataset. According to

Chonghe et al. (2003), the average PAD for these compounds using

the ANN approach is less than 2%. On the other hand, the SVM-

based method shows a more accurate prediction as the average PAD

is less than 0.58% (Javed et al., 2007). Based on these results, it can be

concluded that with novel GdFeO3 perovskites, GP performed better

than ANN but not as well as SVM. However, it should be noted that

GP uses only two atomic parameters, whereas both ANN- and SVM-

based approaches have used five atomic parameters.

6. Conclusions

In this work GP is used to develop efficient prediction models for the

LC of GdFeO3-type perovskites. The experimental results obtained

using the evolved expressions confirm the generality of the proposed

method and show that the average PAD is approximately 1.5% in all

cases. Comparing it to the other machine-learning-based techniques,

the proposed technique is successful in presenting three functional

expressions for LC a, b and c by using just two atomic parameters; the

ionic radii of cations A and B. For accuracy enhancement in LC

prediction, additional atomic parameters such as electronegativity,

valence, bond lengths etc. may be exploited. The employment of the

advanced machine-learning approach, GP, has considerable potential

in optimization- and regression-oriented problems of crystallography.
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Table 1
Statistical summary of PAD on training and testing data.

LC Mean Maximum Minimum Standard deviation

Training dataset a 0.89 5.86 0.00 1.10
b 0.64 3.97 0.00 0.74
c 0.77 4.79 0.00 0.73

Testing dataset a 1.31 2.77 0.21 1.19
b 1.47 2.99 0.09 1.18
c 0.84 1.15 0.34 0.37

Table 2
GP-predicted LC values and their corresponding PAD (%).

Compounds SrNbO3 CaFeO3 TlNiO3 TlFeO3

Expt. LC a 5.6944 5.352 5.3677 5.4465
b 8.0864 7.539 7.562 7.7927
c 5.6894 5.326 5.2549 5.3172

GP Pred. LC a 5.7064 5.4482 5.3922 5.5974
b 8.0941 7.637 7.4487 7.5597
c 5.7521 5.3668 5.1946 5.2990

PAD % a 0.21 1.79 0.46 2.77
b 0.09 1.30 1.49 2.99
c 1.10 0.76 1.14 0.34


